Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
1.
J Biomech ; 166: 112060, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38537369

RESUMO

An accelerometer-based pelvis has been employed to study segment and joint kinematics during scenarios involving close human-object interface and/or line-of-sight obstructions. However, its accuracy for examining low back kinetic outcomes is unknown. This study compared reaction moments and contact forces of the L5S1 joint calculated with an accelerometer-based and optically tracked pelvis segment. An approach to correct the global pelvis position as a function of thigh angle was developed. One participant performed four dynamic tasks: forward bend, squat, sit-to-stand-to-sit, and forward lunge. A standard bottom-up inverse dynamics approach was used and the root mean square error (RMSE) and coefficient of determination (R2) were calculated to examine kinetic differences between the optical and accelerometer approaches. The RMSE observed for L5S1 reaction flexion-extension moments ranged from 1.32 Nm to 2.20 Nm (R2 ≥ 0.98). The RMSE for net shear and compression reaction forces ranged from 2.13 to 10.45 N and 0.63 - 4.96 N, respectively. Similarly, the RMSE for L5S1 joint contact shear and compression ranged from 13.45 N to 19.51 N (R2 ≥ 0.85) and 31.18 N - 55.97 N (R2 ≥ 0.97), respectively. In conclusion, the accelerometer-based pelvis together with the approach to correct the global pelvis position is a feasible approach for computing low back kinetics with a single equivalent muscle model. The observed error in joint contact forces represents less than 5 % of the NIOSH recommended action limits and is unlikely to alter the interpretation of low back injury risk.


Assuntos
Movimento , Pelve , Humanos , Movimento/fisiologia , Pelve/fisiologia , Postura/fisiologia , Abdome , Acelerometria , Fenômenos Biomecânicos
2.
J Appl Biomech ; : 1-8, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467122

RESUMO

Postural assessments of the lumbar spine lack valuable information about its properties. The purpose of this study was to assess neutral zone (NZ) characteristics via in vivo lumbar spine passive stiffness and relate NZ characteristics to standing lumbar lordosis. A comparison was made between those that develop low back pain during prolonged standing (pain developers) and those that do not (nonpain developers). Twenty-two participants with known pain status stood on level ground, and median lumbar lordosis angle was calculated. Participants were then placed in a near-frictionless jig to characterize their passive stiffness curve and location of their NZ. Overall, both pain developers and nonpain developers stood with a lumbar lordosis angle that was more extended than their NZ boundary. Pain developers stood slightly more extended (in comparison to nonpain developers) and had a lower moment corresponding to the location of their extension NZ boundary. Overall, in comparison to nonpain developers, pain developers displayed a lower moment corresponding to the location of their extension NZ boundary which could correspond to greater laxity in the lumbar spine. This may indicate why pain developers have a tendency to stand further beyond their NZ with greater muscle co-contraction.

3.
J Mech Behav Biomed Mater ; 150: 106334, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163418

RESUMO

This study characterized the regional indentation mechanics and native collagen content in cartilaginous endplates (CEPs) from the porcine cervical spine, young human lumbar spine, and aged human lumbar spine. Seventeen endplates were included in this study: six porcine cervical, nine young human lumbar, and two aged human lumbar. Width and depth measurements were obtained using a digital caliper and used to size-normalize and identify the central, anterior, posterior, and lateral regions. Regional microindentation tests were performed using a serial robot, where surface locations were loaded/unloaded at 0.1 mm/s and held at a constant 10 N force for 30 s. Loading stiffness and creep displacement were obtained from force-displacement data. Immunofluorescence staining for type I and type II collagen was subsequently performed on sagittal sections of all endplate regions. 255 images were obtained from which fluorescence intensity, sub-surface void area, and cartilage thickness were measured. CEPs from the young human lumbar spine were, on average, 27% more compliant, 0.891 mm thicker, had a lower fluorescence intensity for native collagen proteins within the cartilage (-58%) and subchondral bone (-24%), and had a sub-surface void area that was 19.7 times greater than porcine cervical CEPs. Compared to aged human lumbar CEPs, young human lumbar CEPs were 57% stiffer, 0.568 mm thicker, had a higher fluorescence intensity for native collagen proteins within the cartilage (+30%) and subchondral bone (+46%), and had a sub-surface void area that was 10.6 times smaller. Although not a perfect mechanical and structural surrogate, porcine cervical CEPs provided initial conditions that may be more representative of the young and healthy human lumbar spine compared to aged human cadaveric specimens. The indentation properties presented may have further applications to finite element models of the human lumbar spine.


Assuntos
Cartilagem , Vértebras Lombares , Humanos , Suínos , Animais , Idoso , Vértebras Cervicais , Colágeno , Cadáver
4.
J Biomech ; 162: 111892, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061208

RESUMO

Mechanical strain inhibits bacterial collagenase from cleaving collagen. Additionally, the toe region of a soft tissue's force-elongation curve arises from sequentially engaging collagen fibrils as the tissue lengthens. Together, these phenomena suggest that mechanical strain may gradually inhibit collagenase activity through a soft tissue's toe region. Therefore, this investigation sought to test this hypothesis. 92 rat tail tendon fascicles from 3 female sentinel animals underwent preliminary stiffness tests, and their force-elongation curves were fit to a collagen distribution model. This distribution-based model calculated the force magnitude corresponding to p% of collagen fibril engagement. Specimens were separated into one of five levels of p, and that level of force was maintained for two hours while being exposed to 0.054 U/mL of bacterial collagenase from C. histolyticum. The specimens were strained to failure following the creep test, and the relative reduction in stiffness was quantified to estimate the fraction of digested fibrils. Every 10% additional collagen engagement corresponded to a 6.3% (97% highest density interval: 4.3 - 8.4%) retention of stiffness, which indicated collagenase inhibition. The results of this investigation were consistent with a strain-inhibition hypothesis along with the established uncrimping mechanism in the toe region. These results support an interaction between mechanical strain and collagenolysis, which may be valuable for disease prevention or treatment.


Assuntos
Cauda , Tendões , Ratos , Feminino , Animais , Tendões/fisiologia , Colágeno/fisiologia , Colagenases , Matriz Extracelular
5.
Ann Biomed Eng ; 52(3): 510-525, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37923814

RESUMO

PURPOSE: Non-neutral neck positions are important initial conditions in impact scenarios, associated with a higher incidence of injury. Repositioning in finite element (FE) neck models is often achieved by applying external boundary conditions (BCs) to the head while constraining the first thoracic vertebra (T1). However, in vivo, neck muscles contract to achieve a desired head and neck position generating initial loads and deformations in the tissues. In the present study, a new muscle-based repositioning method was compared to traditional applied BCs using a contemporary FE neck model for forward head flexion of 30°. METHODS: For the BC method, an external moment (2.6 Nm) was applied to the head with T1 fixed, while for the muscle-based method, the flexors and extensors were co-contracted under gravity loading to achieve the target flexion. RESULTS: The kinematic response from muscle contraction was within 10% of the in vivo experimental data, while the BC method differed by 18%. The intervertebral disc forces from muscle contraction were agreeable with the literature (167 N compression, 12 N shear), while the BC methodology underpredicted the disc forces owing to the lack of spine compression. Correspondingly, the strains in the annulus fibrosus increased by an average of 60% across all levels due to muscle contraction compared to BC method. CONCLUSION: The muscle repositioning method enhanced the kinetic response and subsequently led to differences in tissue-level responses compared to the conventional BC method. The improved kinematics and kinetics quantify the importance of repositioning FE neck models using active muscles to achieve non-neutral neck positions.


Assuntos
Disco Intervertebral , Pescoço , Fenômenos Biomecânicos , Análise de Elementos Finitos , Músculos do Pescoço/fisiologia
6.
Spine J ; 24(1): 161-171, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37487932

RESUMO

BACKGROUND CONTEXT: Injury to the cartilaginous endplate (CEP) is linked to clinically relevant low back disorders, including intervertebral disc degeneration and pain reporting. Despite this link to clinical disorders, the CEP injury pathways and the modulating effect of mechanical loading parameters on the pace of damage accumulation remains poorly understood. PURPOSE: This study examined the effect of cyclic loading on the initiation and accumulation of changes to native collagen content (type I, type II) and microstructural damage in the central region of cadaveric porcine CEPs. STUDY DESIGN: In vitro longitudinal study. METHODS: One hundred fourteen porcine cervical spinal units were included (N=6 per group). The study contained a control group (no cyclic loading) and 18 experimental groups that differed by loading duration (1,000, 3,000, 5,000 cycles), joint posture (flexed, neutral), and cyclic peak compression variation (10%, 20%, 40%). Multicolor immunofluorescence staining was used to quantify loading induced changes to type I (ie, subchondral bone) and type II (ie, endplate) native collagen content (fluorescence area, fluorescence intensity) and microstructural damage (pore area [transverse plane], void area along the CEP-bone border [sagittal plane]). RESULTS: Significant main effects of loading duration and posture were observed for fluorescence area and fluorescence intensity of type I and II collagen. In the transverse plane, type II fluorescence area significantly decreased following 1,000 cycles (-12%), but a significant change in fluorescence intensity was not observed until 3,000 cycles (-17%). Type II fluorescence area (-14%) and intensity (-10%) were both significantly less in flexed postures compared to neutral. Similar trends were observed for type I collagen in the sagittal plane sections. Generally, significant changes to fluorescence area were accompanied by the development of microstructural voids along the endplate-subchondral bone border. CONCLUSIONS: These findings demonstrate that microstructural damage beneath the endplate surface occurs before significant changes to the density of native type I and II collagen fibers. Although flexed postures were associated with greater and accelerated changes to native collagen content, the injury initiation mechanism appears similar to neutral. CLINICAL SIGNIFICANCE: Neutral joint postures can delay the initiation and pace of microdamage accumulation in the CEP during low-to-moderate demand lifting tasks. Furthermore, the management of peak compression exposures appeared relevant only when a neutral posture was maintained. Therefore, clinical low back injury prevention and load management efforts should consider low back posture in parallel with applied joint forces.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Humanos , Animais , Suínos , Estudos Longitudinais , Cartilagem/metabolismo , Coluna Vertebral/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Colágeno , Disco Intervertebral/metabolismo , Suporte de Carga
7.
Appl Ergon ; 111: 104044, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37187069

RESUMO

A novel active office chair (Movably Pro) was designed to facilitate frequent sit-stand movement 1) through auditory and tactile prompts and 2) with minimal-to-no work surface adjustment when transitioning. The purpose of this study was to compare lumbopelvic kinematics, discomfort, and task performance between the novel chair and traditional sitting/standing. Sixteen participants completed three separate 2-h sedentary exposures. Although participants transitioned every 3 min between sitting and standing with the novel chair, productivity was not affected. When standing in the novel chair, the lumbopelvic angles fell in between traditional sitting and standing (p < 0.01). Movement and/or postural changes that occurred with the novel chair reduced low back and leg discomfort for pain developers (PDs) (p < 0.01). All participants classified as PDs in traditional standing were non-PDs with the novel chair. This intervention was effective in reducing sedentary time without the time loss associated with desk movement.


Assuntos
Postura , Local de Trabalho , Humanos , Movimento , Posição Ortostática , Postura Sentada , Dor
8.
Clin Biomech (Bristol, Avon) ; 104: 105946, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37003044

RESUMO

BACKGROUND: Compared to the documented overuse mechanisms of endplate fracture lesions, the cause of Schmorl's node injuries remains unknown, despite existing hypotheses. Therefore, this study aimed to examine and dissociate the overuse injury mechanisms of these spinal pathologies. METHODS: Forty-eight porcine cervical spinal units were included. Spinal units were randomly assigned to groups that differed by initial condition (control, sham, chemical fragility, structural void) and loading posture (flexed, neutral). Chemical fragility and structural void groups involved a verified 49% reduction in localized infra-endplate trabecular bone strength and removal of central trabecular bone, respectively. All experimental groups were exposed to cyclic compression loading that was normalized to 30% of the predicted tolerance until failure occurred. The cycles to failure were examined using a general linear model and the distribution of injury types were examined using chi-squared statistics. FINDINGS: The incidence of fracture lesions and Schmorl's nodes was 31(65%) and 17(35%), respectively. Schmorl's nodes were exclusive to chemical fragility and structural void groups and 88% occurred in the caudal joint endplate (p = 0.004). In contrast, 100% of control and sham spinal units sustained fracture lesions, with 100% occurring in the cranial joint endplate (p < 0.001). Spinal units tolerated 665 fewer cycles when cyclically loaded in flexed postures compared to neutral (p = 0.015). Furthermore, the chemical fragility and structural void groups tolerated 5318 fewer cycles compared to the control and sham groups (p < 0.001). INTERPRETATION: These findings demonstrate that Schmorl's node and fracture lesion injuries can result from pre-existing differences in the structural integrity of trabecular bone supporting the central endplate.


Assuntos
Fraturas Ósseas , Deslocamento do Disco Intervertebral , Animais , Vértebras Cervicais/patologia , Fraturas Ósseas/patologia , Vértebras Lombares/patologia , Suínos
9.
J Appl Biomech ; 39(2): 118-123, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36913948

RESUMO

Computational approaches for movement onset detection can standardize and automate analyses to improve repeatability, accessibility, and time efficiency. With the increasing interest in assessing time-varying biomechanical signals such as force-time recordings, there remains a need to investigate the recently adopted 5 times the standard deviation (5 × SD) threshold method. In addition, other employed methods and their variations such as the reverse scanning and first derivative methods have been scarcely evaluated. The aim of this study was to compare the 5 × SD threshold method, 3 variations of the reverse scanning method, and 5 variations of the first derivative method against manually selected onsets, in the countermovement jump and squat. Limits of agreement with respect to onsets, manually selected from unfiltered data, were best for the first derivative method using a 10-Hz low-pass filter (limits of agreement: -0.02 to 0.05 s and -0.07 to 0.11 s for the countermovement jump and squat, respectively). Thus, even when the onset of unfiltered data is of primary interest, filtering before calculating the first derivative is necessary as it reduces the amplification of high frequencies. The first derivative approach is also less susceptible to inherent variation during the quiet phase prior to the onset compared to the other approaches investigated.


Assuntos
Movimento , Postura , Humanos , Fenômenos Biomecânicos
10.
J Electromyogr Kinesiol ; 69: 102752, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36746068

RESUMO

In vivo lumbar passive stiffness is often used to assess time-dependent changes in lumbar tissues and to define the neutral zone. We tested the hypothesis that flexing the hips would alter tension in hip and spine musculature, leading to a more extended passive stiffness curve (i.e., right-shifted), without changes in lumbar stiffness. Twenty participants underwent side-lying passive testing with the lower limbs positioned in Stand, Kneel, and Sit representative postures. Moment-angle curves were constructed from the lumbar angles and the moment at L4/5 and partitioned into three zones. Partially supporting our hypothesis, lumbar stiffness within the low and transition stiffness zones was similar between the Stand and Sit. Contrary to our hypothesis, lumbar angles were significantly larger in the Sit compared to the Stand and Kneel postures at the first and second breakpoints, with average differences of 9.3° or 27.2% of passive range of motion (%PassRoM) in flexion and 5.6° or 16.6 %PassRoM in extension. Increased flexion in the Sit may be linked to increased posterior pelvic tilt and associated lower lumbar vertebrae flexion. Investigators must ensure consistent pelvis and hip positioning when measuring lumbar stiffness. Additionally, the adaptability of the neutral zone to pelvis posture, particularly between standing and sitting, should be considered in ergonomic applications.


Assuntos
Músculo Esquelético , Postura Sentada , Humanos , Músculo Esquelético/fisiologia , Postura/fisiologia , Vértebras Lombares/fisiologia , Extremidade Inferior , Amplitude de Movimento Articular/fisiologia
11.
Spine (Phila Pa 1976) ; 48(9): E122-E129, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36730896

RESUMO

STUDY DESIGN: In vitro biomechanical study. OBJECTIVE: This study investigated the incidence of microstructural endplate injuries caused by cyclic compression loading. The covarying effects of joint posture, loading duration, and peak compression variation were assessed. SUMMARY OF BACKGROUND DATA: The endplate is physiologically and functionally important for the maintenance of spine health. Despite the ability to radiographically diagnose and classify macroscopic endplate injuries, the mechanical mechanisms of injury initiation and progression remain largely unknown. METHODS: One hundred and fourteen porcine cervical spinal units were examined. All spinal units were exposed to preconditioning tests, followed by cyclic compression testing that differed by posture (flexed, neutral), loading duration (1000, 3000, 5000 cycles), and peak compression variation (10%, 20%, 40%). Microstructural injuries were examined via immunofluorescence staining for collagen I ( i.e. , subchondral bone) and collagen II ( i.e. , hyaline cartilage endplate). From the 678 acquired images, the incidence of node, avulsion, cartilage, and circumferential pore microinjuries were determined. The distribution of microinjuries between postures, spinal levels, and vertebrae were evaluated along with the associations of incidence and size of injuries with loading duration and variation. RESULTS: The incidence of avulsion injuries was significantly greater in caudal endplates (92%, P =0.006). No other injuries differed between vertebrae ( P ≥0.804) and no significant differences were observed between spinal units ( P ≥0.158). With respect to posture, 100% ( P <0.001) and 90% ( P <0.001) of avulsion and node injuries, respectively, occurred in flexed postures, whereas 82% ( P <0.001) of cartilage microinjuries occurred with neutral postures. Loading duration was significantly associated with microinjury incidence ( P <0.001) and lesion size ( P ≤0.003). CONCLUSION: Mechanical factors such as posture did not appreciably affect the incidence of endplate injury, but microinjury types were differently distributed between flexed and neutral postures. The duration of compression was shown to have an important role in the incidence of microinjury and lesion size.


Assuntos
Cartilagem Hialina , Coluna Vertebral , Animais , Suínos , Incidência , Suporte de Carga/fisiologia , Estresse Mecânico , Fenômenos Biomecânicos/fisiologia
12.
Work ; 76(1): 303-313, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36806537

RESUMO

BACKGROUND: Adherence to sit-stand workstation usage has been shown to decrease post-intervention, with the reported reasons related to fatigue, cumbersome workstation adjustments, and focus. OBJECTIVE: To characterize the mechanical work and total energy required to perform transitions from a traditional office chair and a dynamic chair designed specifically for sit-stand workstations. The whole-body, thigh, and shank centre-of-mass (CoM) were evaluated. METHODS: Fifteen participants (8 male; 7 female) performed three intermittent sit-to-stand and stand-to-sit transitions from the traditional and dynamic chairs. Kinematic data of the trunk, pelvis, and lower extremities were collected using an optoelectronic motion capture system and triaxial accelerometers. The change in total energy and work between the sitting and standing postures were evaluated for each CoM point. Lumbar spine range-of-motion was further assessed between chair conditions. RESULTS: Chair designs facilitated opposite work and energy responses for a given transition. Transitions performed from the dynamic chair reduced the work and total energy of the whole-body CoM, by ±8.5J and ±214.6J (p < 0.001), respectively. The work and energy of the thigh CoM differed within transitions (p < 0.001), but the positive and negative components were similar between chairs (work =±0.18J, energy =±0.55J). The dynamic chair increased the total energy (±38.3J, p < 0.001) but not the work of the shank CoM (±1.1J, p≥0.347). CONCLUSION: The required mechanical work and energy of sit-to-stand and stand-to-sit transitions was modified by chair design. These outcomes have the potential to address identified reasons for the disuse of sit-stand workstations.


Assuntos
Postura Sentada , Local de Trabalho , Humanos , Masculino , Feminino , Comportamento Sedentário , Postura/fisiologia , Posição Ortostática
13.
Work ; 75(2): 553-566, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36641712

RESUMO

BACKGROUND: Sitting can induce transient low back pain (LBP) in healthy individuals. A rest from sitting should provide relief, however, the parameters of breaks (activity type, intensity, duration, and timing) are not currently known. OBJECTIVE: The purpose of this study was to examine the effect of 2-minute walking breaks at 40-minute intervals on sitting-induced LBP. METHODS: Thirty-two healthy participants were recruited for a within-control study: two randomly presented sessions of sitting for 2 hours with and without breaks. Outcome measures were compared between condition and pain group using a three-way ANOVA with significance atp > 0.05. RESULTS: Walking breaks at 40-minute intervals result in significantly lower pain ratings than those taken immediately before the break for sitting-induced back pain developers. However, this relief is short lived (<10 minutes), with ratings increasing to pre-break levels once the sitting exposure resumes. There were no differences in biomechanical factors between sessions. Regardless of session type, pain developers displayed higher spine fidget frequency than non-pain developers, females sat with less spine flexion, with greater gluteal activation levels, and with their center of pressure approximately half a centimeter to the left and forward compared to males, and males had significantly greater peak pressures over a smaller area compared to females. CONCLUSION: Walking breaks at 40-minute intervals provide significant, but temporary, relief of sitting-induced back pain for pain developers. Future work should optimize break parameters and examine the longer-term benefit of breaks, especially for individuals that are not able to tolerate sitting for extended durations.


Assuntos
Dor Lombar , Coluna Vertebral , Feminino , Humanos , Masculino , Dor Lombar/etiologia , Amplitude de Movimento Articular , Descanso , Caminhada
14.
Hum Factors ; 65(7): 1394-1406, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-34579587

RESUMO

OBJECTIVE: To explore how individual characteristics influence selected lumbar support prominence (LSP), seated lumbar flexion, seatback average pressure, contact area, and center of pressure (CoP) location before and after 1 hr of driving. BACKGROUND: An LSP can alter posture and may reduce low back pain during prolonged driving. Although LSP preference varies across individuals and may change over time, few investigations have explored the time-varying response to individually selected adjustable seat parameters. METHOD: Forty individuals selected LSP settings in an automotive seat through a series of systematic adjustment trials. The average LSP setting was fixed for a 1-hr driving simulation, followed by one final adjustment trial. Regressions were performed between individual characteristics and selected LSP, lumbar posture, and measures of seatback pressure from the initial adjustment trials. ANOVAs were performed to determine the effect of time and sex on these dependent variables. Discomfort was also monitored throughout the protocol. RESULTS: Individual's standing lumbar lordosis, selected LSP, and height and mass were significant predictors for seated lumbar flexion, seatback average pressure, and contact area, respectively. Discomfort levels remained low; however, following the driving protocol, individuals altered their posture to decrease lumbar flexion and increase seatback average pressure without significant adjustments to the LSP. CONCLUSION: These findings highlight individual characteristics to consider in automotive seat design and that the method for determining LSP settings may facilitate appropriate LSP selection. APPLICATION: A systematic method to determine LSP settings may reduce discomfort and automate seat adjustments, such that only short-term postural adjustments may be required.


Assuntos
Condução de Veículo , Dor Lombar , Humanos , Região Lombossacral , Pressão , Postura/fisiologia , Fenômenos Biomecânicos
15.
Ergonomics ; 66(3): 338-349, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35634905

RESUMO

Minimal data exist on the neutral position for the lumbar spine, trunk, and thighs when adopting a hybrid posture. This study examined sex differences in the neutral zone lumbar stiffness and the lumbar and trunk-thigh angle boundaries of the neutral zone, and determined if the standing lumbar angle fell within the neutral zone. Passive lumbar flexion and extension moment-angle curves were generated for 31 participants (13 M, 18 F), pooled from two datasets, with trunk-thigh angles available for 10 participants. The neutral zone was defined as the low stiffness zone from both the flexion and extension curves. Males demonstrated significantly greater extensor stiffness. Neutral lumbar and trunk-thigh angles ranged on average -22.2 to 0.2° and 124.2 to 159.6° for males and -17.8 to -1.3° and 143.2 to 159.5° for females, respectively. Standing lumbar angles fell outside the neutral zone for 44% of participants. These neutral zone boundaries may inform kinematics for hybrid chair designs.Practitioner summary: Adoption of a neutral spinal posture may be achieved through hybrid chair design, yet minimal data exists on a physiologically defined neutral zone. Using measures of in vivo lumbar stiffness, the lumbar and trunk-thigh angular boundaries of the neutral zone were defined for both males and females.Abbreviations: EMG: electromyography; MVC: maximal voluntary contraction.


Assuntos
Músculo Esquelético , Coxa da Perna , Humanos , Masculino , Feminino , Músculo Esquelético/fisiologia , Postura/fisiologia , Eletromiografia , Vértebras Lombares/fisiologia , Fenômenos Biomecânicos
16.
J Biomech ; 146: 111416, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584505

RESUMO

Occupations or activities where donning head-supported mass (HSM) is commonplace put operators at an elevated risk of chronic neck pain. Yet, there is no consensus about what features of HSM influence the relative contributions to neck loads. Therefore, we tested four hypotheses that could increase neck loads: (i) HSM increases gravitational moments; (ii) more muscle activation is required to stabilize the head with HSM; (iii) the position of the HSM centre of mass (COM) induces gravitational moments; and (iv) the added moment of inertia (MOI) from HSM increases neck loads during head repositioning tasks. We performed a sensitivity analysis on the C5-C6 compression evaluated from a 24-degree freedom cervical spine model in OpenSim for static and dynamic movement trials. For static trials, we varied the magnitude of HSM, the position of its COM, and developed a novel stability constraint for static optimization. In dynamic trials, we varied HSM and the three principle MOIs. HSM magnitude and compression were linearly related to one another for both static and dynamic trials, with amplification factors varying between 1.9 and 3.9. Similar relationships were found for the COM position, although the relationship between C5-C6 peak compression and MOI in dynamic trials was generally nonlinear. This sensitivity analysis uncovered evidence in favour of hypotheses (i), (ii) and (iii). However, the model's prediction of C5-C6 compression was not overly sensitive to the magnitude of MOI. Therefore, the HSM mass properties may be more influential on neck compression than MOI properties, even during dynamic tasks.


Assuntos
Vértebras Cervicais , Pescoço , Pescoço/fisiologia , Músculos , Simulação por Computador , Fenômenos Biomecânicos
17.
J Mech Behav Biomed Mater ; 136: 105542, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36327666

RESUMO

This study quantified the effect of subthreshold loading histories that differed by joint posture (neutral, flexed), peak loading variation (10%, 20%, 40%), and loading duration (1000, 3000, 5000 cycles) on the post-loading Ultimate Compressive Tolerance (UCT), yield force, and regional Cartilaginous End Plate (CEP) indentation responses (loading stiffness and creep displacement). One hundred and fourteen porcine spinal units were included. Following conditioning and cyclic compression exposures, spinal units were transected and one endplate from each vertebra underwent subsequent UCT or microindentation testing. UCT testing was conducted by compressing a single vertebra at a rate of 3 kN/s using an indenter fabricated to a representative intervertebral disc size and shape. Force and actuator position were sampled at 100 Hz. Non-destructive uniaxial CEP indentation was performed at five surface locations (central, anterior, posterior, right, left) using a Motoman robot and aluminum indenter (3 mm hemisphere). Force and end-effector position were sampled at 10 Hz. A significant three-way interaction was observed for UCT (p = 0.038). Compared to neutral, the UCT was, on average, 1.9 kN less following each flexed loading duration. No effect of variation was observed in flexion; however, 40% variation caused the UCT to decrease by an average of 2.13 kN and 2.06 kN following 3000 and 5000 cycles, respectively. The indentation stiffness in the central CEP mimicked the UCT response. These results demonstrate a profound effect of posture on post-loading UCT and CEP behaviour. Control of peak compression exposures became particularly relevant only when a neutral posture was maintained and beyond the midpoint of the predicated lifespan.


Assuntos
Disco Intervertebral , Suínos , Animais , Suporte de Carga/fisiologia , Estresse Mecânico , Disco Intervertebral/fisiologia , Postura/fisiologia , Fenômenos Físicos , Fenômenos Biomecânicos , Vértebras Lombares
18.
Cell Tissue Res ; 390(1): 59-70, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35790585

RESUMO

The annulus fibrosus (AF) and endplate (EP) are collagenous spine tissues that are frequently injured due to gradual mechanical overload. Macroscopic injuries to these tissues are typically a by-product of microdamage accumulation. Many existing histochemistry and biochemistry techniques are used to examine microdamage in the AF and EP; however, there are several limitations when used in isolation. Immunofluorescence may be sensitive to histochemical and structural damage and permits the simultaneous evaluation of multiple proteins-collagen I (COL I) and collagen II (COL II). This investigation characterized the histochemical and structural damage in initially healthy porcine spinal joints that were either unloaded (control) or loaded via biofidelic compression loading. The mean fluorescence area and mean fluorescence intensity of COL II significantly decreased (- 54.9 and - 44.8%, respectively) in the loaded AF (p ≤ 0.002), with no changes in COL I (p ≥ 0.471). In contrast, the EP displayed similar decreases in COL I and COL II fluorescence area (- 35.6 and - 37.7%, respectively) under loading conditions (p ≤ 0.027). A significant reduction (-31.1%) in mean fluorescence intensity was only observed for COL II (p = 0.043). The normalized area of pores was not altered on the endplate surface (p = 0.338), but a significant increase (+ 7.0%) in the void area was observed on the EP-subchondral bone interface (p = 0.002). Colocalization of COL I and COL II was minimal in all tissues (R < 0.34). In conclusion, the immunofluorescence analysis captured histochemical and structural damage in collagenous spine tissues, namely, the AF and EP.


Assuntos
Anel Fibroso , Disco Intervertebral , Animais , Colágeno , Cor , Imunofluorescência , Coluna Vertebral , Suínos
19.
J Appl Biomech ; 38(3): 155-163, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35580842

RESUMO

BACKGROUND: Recent work has demonstrated that low back pain is a common complaint following low-speed collisions. Despite frequent pain reporting, no studies involving human volunteers have been completed to examine the exposures in the lumbar spine during low-speed rear impact collisions. METHODS: Twenty-four participants were recruited and a custom-built crash sled simulated rear impact collisions, with a change in velocity of 8 km/h. Randomized collisions were completed with and without lumbar support. Inverse dynamics analyses were conducted, and outputs were used to generate estimates of peak L4/L5 joint compression and shear. RESULTS: Average (SD) peak L4/L5 compression and shear reaction forces were not significantly different without lumbar support (compression = 498.22 N [178.0 N]; shear = 302.2 N [98.5 N]) compared to with lumbar support (compression = 484.5 N [151.1 N]; shear = 291.3 N [176.8 N]). Lumbar flexion angle at the time of peak shear was 36° (12°) without and 33° (11°) with lumbar support. CONCLUSION: Overall, the estimated reaction forces were 14% and 30% of existing National Institute of Occupational Safety and Health occupational exposure limits for compression and shear during repeated lifting, respectively. Findings also demonstrate that, during a laboratory collision simulation, lumbar support does not significantly influence the total estimated L4/L5 joint reaction force.


Assuntos
Dor Lombar , Vértebras Lombares , Fenômenos Biomecânicos , Simulação por Computador , Humanos , Região Lombossacral , Coluna Vertebral
20.
Aerosp Med Hum Perform ; 93(5): 458-466, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35551729

RESUMO

INTRODUCTION: Between 43 and 97% of helicopter pilots in the Canadian Armed Forces report neck pain. Potential contributing factors include the weight of their helmet, night vision goggles (NVG), and counterweight (CW) combined with deviated neck postures. Therefore, the purpose of this investigation was to quantify changes in neck loads associated with posture, helmet, NVG, and CW.METHODS: Eight male subjects volunteered. They undertook one of five deviated neck postures (flexion, extension, lateral bending, axial rotation) times four configurations (no helmet, helmet only, helmet and NVG, and helmet, NVG, and CW). 3D kinematics and EMG from 10 muscles (5 bilaterally) drove a 3D inverse dynamics, EMG-driven model of the cervical spine which calculated joint compression and shear at C5-C6.RESULTS: The compression in the neutral posture was 116.5 (5.7) N, which increased to 143.7 (11.4) N due to a 12.7 N helmet. NVGs, weighing 7.9 N, also generated this disproportionate increase, where the compression was 164.2 (3.7) N. In flexion or extension, the compression increased with increasing head-supported mass, with a maximum of 315.8 (67.5) N with the CW in flexion. Anteroposterior shear was highest in the lateral bending [34.0 (6.2) N] condition, but was generally low (< 30 N). Mediolateral shear was less than 5 N for all conditions.DISCUSSION: Repositioning the center of gravity of the helmet with either NVGs or CW resulted in posture-specific changes to loading. Posture demonstrated a greater potential to reposition the head segment's center of gravity compared to the helmet design. Therefore, helmet designs which consider repositioning the center of gravity may reduce loads in one posture, but likely exacerbate loading in other postures.Barrett JM, McKinnon CD, Dickerson CR, Laing AC, Callaghan JP. Posture and helmet configuration effects on joint reaction loads in the middle cervical spine. Aerosp Med Hum Perform. 2022; 93(5):458-466.


Assuntos
Dispositivos de Proteção da Cabeça , Músculos do Pescoço , Fenômenos Biomecânicos , Canadá , Vértebras Cervicais , Eletromiografia , Humanos , Masculino , Músculos do Pescoço/fisiologia , Postura/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...